
1

Introduction to Database
Systems

CSE 444

Lecture #11
Feb 12 2001

2

Announcements

aHW#2 due on Wed
aMidTerm will be returned next week

3

Concurrency Control:
Review

aProvides Isolation
aCorrectness = Serializability
aStronger Condition: Conflict Serializability
`Tested through precedence graph

aImplemented through locking
`Compatibility among locking modes
`Locking Protocol: 2PL

4

The Phantom Problem

Accounts: {(1, Redmond, 100), (2,
Redmond, 40, (3, UW, 1000)}

Assets: {(Redmond, 140), (UW, 1000)}
aT1: Add all accounts in Redmond and

compare to total in assets. Report error
aT2: Insert a new account {(7,

Redmond, 5000)}

5

Phantom Problem: Analysis

aT1 locks all existing Redmond accounts and
reads accounts

aT2 locks and introduces the new account and
assets. Releases all locks

aT1 locks the assets data and compares total
aSchedule is not serial
`The new account is a phantom tuple

aObservation
`Ensure that the “right” objects are locked
⌧Lock all accounts with branch = Redmond

`No change in 2PL needed
6

Implementing Locking

aNeeds to execute Lock and Unlock as
atomic operations
aNeeds to be very fast ~100 instructions
aLock Table
`Low-level data structure in memory (not SQL

Table!)
`Implemented as a hash table

2

7

Issues in Managing Locks

aMulti-granularity locking
`Concurrency v.s. locking overhead
`Intention locks on higher-level objects
`Lock Escalation

aHot spots
`Minimize lock duration

8

SQL-92 Syntax for
Transactions

aStart Transaction: No explicit statement.
Implicitly started
`By a SQL statement
`TP monitor (agents other than application

programs)

aEnd Transaction:
`By COMMIT or ROLLBACK
`By external agents

9

SQL-92: Setting the
Properties of Transactions

aSET TRANSACTION
`[READ ONLY | READ WRITE]
`ISOLATION LEVEL
[READ UNCOMMITTED | SERIALIZABLE |

REPEATABLE READ | READ COMMITTED]

10

Explanation of Isolation
Levels
aRead Uncommitted
`Can see uncommitted changes of other transactions
`Dirty Read, Unrepeatable Read
`Recommended only for statistical functions

aRead Committed
`Can see committed changes of other transactions
`No Dirty read, but unrepeatable read possible
`Acceptable for query/decision-support

aRepeatable Read
`No dirty or unrepeatable read
`May exhibit phantom phenomenon

aSerializable

11

Implementation of
Isolation Levels

ISOLATION
LEVEL

DIRTY
READ

UNREPEATABLE
READ PHANTOM IMPLEMENTATION

Read
Uncommitted Y Y Y No S locks; writers must run

at higher levels

Read
Committed N Y Y Strict 2PL X locks; S locks

released anytime

Repeatable
Reads N N Y Strict 2PL on data

Serializable N N N Strict 2PL on data and
indices (or predicate locking)

12

Summary of Concurrency
Control

aConcurrency control key to a DBMS.
aTransactions and the ACID properties:
`I handled by concurrency control.
`A & D coming soon with logging & recovery.

aConflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

aSerial execution is our model of correctness.

3

13

Summary of Concurrency
Control (Contd.)
aSerializability allows us to “simulate” serial

execution with better performance.
a2PL: A simple mechanism to get serializability.
aLock manager module automates 2PL
`Lock table is a big main-mem hash table

aDeadlocks are possible, and typically a
deadlock detector is used to solve the
problem.

Recovery

Reading: Chapter 8

15

Review: The ACID
properties

a A tomicity: All actions in the Xact happen, or none
happen.

a C onsistency: If each Xact is consistent, and the
DB starts consistent, it ends up consistent.

a I solation: Execution of one Xact is isolated from
that of other Xacts.

aD urability: If a Xact commits, its effects persist.

aThe Recovery Manager guarantees Atomicity &
Durability. 16

Motivation

aAtomicity:
`Transactions may abort (“Rollback”).

aDurability:
`What if DBMS stops running? (Causes?)

crash!
� Desired Behavior after

system restarts:
– T1, T2 & T3 should be

durable.
– T4 & T5 should be

aborted (effects not seen).

T1
T2
T3
T4
T5

17

Rollback and Concurrency

aHow does one undo the effects of a xact?
aWhat if another Xact sees these effects??

⌧Must undo that Xact as well

18

Cascading Aborts

aAbort of T1 requires abort of T2!
`Cascading Abort

aAn ACA (avoids cascading abort)
schedule is one in which cascading abort
cannot arise:
`A Xact only reads data from committed Xacts.

T1 T2

R(A)

W(A)

R(A)

W(A)

abort

4

19

Recoverable Schedules

aAbort of T1 requires abort of T2!
`But T2 has already committed!

aA recoverable schedule is one in
which this cannot happen.
`i.e., a Xact commits only after all the Xacts it reads

from commit.
`ACA implies Recoverable (but not vice-versa!).

a2PL ensure that only recoverable schedules arise

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

20

What is Recovery?

aConcurrency control is in effect.
`Strict 2PL, in particular

aDiscussion on Recovery may be based on
`Single user, but multiple concurrent transactions

aUser does transactions but failures are possible
aRecovery: scheme to guarantee Atomicity &

Durability of user transactions

21

Assumption (for Simplicity)

aPage Granularity for everything
`Database = Set of Pages
`Each update by a transaction applies to only

one page
`Each update writes a whole page
`Locks are set on pages

22

Storage Model

aStable Database
`One copy for every database page

aDatabase Buffer/Cache
`One copy of some of the database pages

accessed/updated
`May contain updates that have not been

written to stable database): dirty pages

23

Storage Model: Cache
Manager

aCache Descriptor Table
`Database Page
`Main memory address
`Dirty bit
`Pin count

aOperations
`Fetch(P), Pin(P), UnPin(P)
`Flush(P) [sync write], Deallocate(P)

24

A Simplified Way of
Thinking

aINPUT(X): read element X to memory buffer
aREAD(X,t): copy element X to transaction local

variable t
aWRITE(X,t): copy transaction local variable t to

element X
aOUTPUT(X): write element X to disk
aSomewhat inaccurate account?

5

25

Example
READ(A,t); t := t*2;WRITE(A,t)
READ(B,t); t := t*2;WRITE(B,t)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

26

Types of Failures

aData Integrity
`Prevent by constraints in the database/good software

practices, Fix with data cleaning applications
aTransaction failure: When a transaction aborts
`Fix with recovery

aSystem failures: Loss of contents of volatile
store (Power/OS outrage)
`Prevent by stable storage, Fix with recovery

aMedia Failure: Loss of contents of disk
`Prevent by using redundancy (RAID, archive), Fix

with recovery

27

Handling System Failures

aWhen system crashes, internal state is
lost
`Don’t know which parts executed and which

didn’t

aRemedy: use a log
`A file that records every single update

28

The Log

aAn append-only file containing log records
aMultiple transactions run concurrently, log

records are interleaved
aAfter a system crash, use log to:
`Redo some transaction that didn’t commit
`Undo other transactions that didn’t commit

aTechniques
`Undo Logging
`Redo Logging
`Undo/Redo Logging (preferred)

29

Undo Logging

Log records
a<START T> = transaction T has begun
a<COMMIT T> = T has committed
a<ABORT T>= T has aborted
a<T,X,v>= T has updated element (page)

X, and its old value was v

30

Undo-Logging Rules

U1: If T modifies X, then the log record
<T,X,v> must be written to disk before X
is written to disk

U2: If T commits, then <COMMIT T> must
be written to log only after all changes by
T are written to disk

6

31

<COMMIT T>

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

32

Recovery with Undo Log

After system’s crash, run recovery manager
aIdea 1. Decide for each transaction T

whether it is completed or not
`<START T>….<COMMIT T>…. = yes
`<START T>….<ABORT T>……. = yes
`<START T>……………………… = no

aIdea 2. Undo all modifications by
incomplete transactions

33

Recovery with Undo Log

Recovery manager:
aRead log from the end; cases:
`<COMMIT T>: mark T as completed
`<ABORT T>: mark T as completed
`<T,X,v>: if T is not completed

then write X=v to disk
else ignore

`<START T>: ignore

34

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

35

Recovery with Undo Log

aNote: all undo commands are idempotent
`If we perform them a second time, no harm

is done
`E.g. if there is a system crash during

recovery, simply restart recovery from scratch

36

Recovery with Undo Log

When do we stop reading the log ?
aWe cannot stop until we reach the

beginning of the log file
aThis is impractical
aBetter idea: use checkpointing

7

37

Checkpointing

Checkpoint the database periodically
aStop accepting new transactions
aWait until all current transactions

complete
aFlush dirty pages to disk
aWrite a <CKPT> log record
aResume transactions

38

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions

39

Nonquiescent
Checkpointing

aProblem with checkpointing: database
freezes during checkpoint
aWould like to checkpoint while database is

operational
a=nonquiescent (fuzzy) checkpointing

40

Nonquiescent
Checkpointing

aStop accepting any new update/commit/abort
`Make a list of all dirty pages in the buffer
`Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions
aStart normal operation
`Flush unpinned dirty pages as a low-priority item

aWhen all of T1,…,Tk have completed, and their
dirty pages written out
`write <END CKPT>
`Cannot start a <START CKPT…> until earlier <END

CKPT> is complete

41

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<START CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions

Q: What if no
<End CKPT> in
the log?

42

Redo Logging

Log records
a<START T> = transaction T has begun
a<COMMIT T> = T has committed
a<ABORT T>= T has aborted
a<T,X,v>= T has updated element X, and

its new value is v

8

43

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to log
before X is written (flushed) to disk

Lazy write to disk – may need to “redo”
work during recovery

44

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

45

Recovery with Redo Log

After system’s crash, run recovery manager
aStep 1. Decide for each transaction T

whether it is completed or not
`<START T>….<COMMIT T>…. = yes
`<START T>….<ABORT T>……. = yes
`<START T>……………………… = no

aStep 2. Read log from the beginning, redo
all updates of committed transactions

46

Recovery using Redo Log

aFor committed transactions
`Replay Write() for the log record <T,X,v>

aFor each incomplete transaction T
`Write <Abort T> to log

aFollow Example 8.8

47

Example: Recovery with
Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

48

Nonquiescent
Checkpointing

aWrite a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions
aFlush to disk all blocks of committed

transactions (dirty blocks), while
continuing normal operation
aWhen all blocks have been written, write

<END CKPT>

9

49

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from there,
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

50

Comparison Undo/Redo

aUndo logging:
`OUTPUT must be done early
`If <COMMIT T> is seen, T definitely has

written all its data to disk

aRedo logging
`OUTPUT must be done late
`If <COMMIT T> is not seen, T definitely has

not written any of its data to disk

51

Undo/Redo Logging

aLog Record: <T,X,u,v>= T has updated
element X, its old value was u, and its
new value is v
aRule: If T modifies X, then the log record

<T,X,u,v> must be written to disk before
X is written to disk

52

1616161616OUTPUT(B)

<COMMIT T>

816161616OUTPUT(A)

<START T>

<T,B,8,16>

<T,A,8,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

53

Recovery with Undo/Redo
Log

After system’s crash, run recovery manager
aRedo all committed transaction beginning at last

checkpoint
aUndo all uncommitted transactions, until last

checkpoint

54

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

10

55

Media Failure

aRedundancy is the key
`Shadowed Disk/RAID either for database or

at least for the log
`Cannot afford to lose part of a log!
⌧Only place which has before-image (after-image)

of uncommitted data written (not written) to disk

`Minimize shared hardware

aUsing Archive (next lecture)

56

Summary

aCheckpointing: A quick way to limit the amount
of log to scan on recovery.

aRecovery works in 3 phases:
`Analysis: Forward from checkpoint.
`Redo: Forward from checkpoint.
`Undo: Backward until checkpoint

aTolerating media Failure requires more
redundancy

aMany more optimizations in real system

